Three-Dimensional Structure of Human NLRP10/PYNOD Pyrin Domain Reveals a Homotypic Interaction Site Distinct from Its Mouse Homologue

نویسندگان

  • Ming-Yuan Su
  • Chiao-I Kuo
  • Chi-Fon Chang
  • Chung-I Chang
چکیده

NLRPs (Nucleotide-binding domain, leucine-rich repeat and pyrin domain containing proteins) are a family of pattern-recognition receptors (PRRs) that sense intracellular microbial components and endogenous stress signals. NLRP10 (also known as PYNOD) is a unique NLRP member characterized by a lack of the putative ligand-binding leucine-rich repeat domain. Recently, human NLRP10 has been shown to inhibit the self-association of ASC into aggregates and ASC-mediated procaspase-1 processing. However, such activities are not found in mouse NLRP10. Here we report the solution structure and dynamics of human NLRP10 pyrin domain (PYD), whose helix H3 and loop H2-H3 adopt a conformation distinct from those of mouse NLRP10. Docking studies show that human and mouse NLRP10 PYDs may interact differently with ASC PYD. These results provide a possible structural explanation for the contrasting effect of NLRP10 on ASC aggregation in human cells versus mouse models. Finally, we also provide evidence that in human NLRP10 the PYD domain may not interact with the NOD domain to regulate its intrinsic nucleotide hydrolysis activity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Anti-inflammatory activity of PYNOD and its mechanism in humans and mice.

Many members of the nucleotide-binding and oligomerization domain (NOD)- and leucine-rich-repeat-containing protein (NLR) family play important roles in pathogen recognition and inflammation. However, we previously reported that human PYNOD/NLRP10, an NLR-like protein consisting of a pyrin domain and a NOD, inhibits inflammatory signal mediated by caspase-1 and apoptosis-associated speck-like p...

متن کامل

PYNOD, a novel Apaf-1/CED4-like protein is an inhibitor of ASC and caspase-1.

Recently, a large subfamily of nucleotide-binding and oligomerization domain-containing proteins that have an N-terminal pyrin-like domain and C-terminal leucine-rich repeats has been described. In this study, we identified PYNOD, a novel member of this family that lacks the leucine-rich repeats. We found that human PYNOD mRNA is expressed in various tissues and at high levels in heart, skeleta...

متن کامل

Coincidental loss of DOCK8 function in NLRP10-deficient and C3H/HeJ mice results in defective dendritic cell migration.

Dendritic cells (DCs) are the primary leukocytes responsible for priming T cells. To find and activate naïve T cells, DCs must migrate to lymph nodes, yet the cellular programs responsible for this key step remain unclear. DC migration to lymph nodes and the subsequent T-cell response are disrupted in a mouse we recently described lacking the NOD-like receptor NLRP10 (NLR family, pyrin domain c...

متن کامل

Structures of the NLRP14 pyrin domain reveal a conformational switch mechanism regulating its molecular interactions

The cytosolic tripartite NLR receptors serve as important signalling platforms in innate immunity. While the C-terminal domains act as sensor and activation modules, the N-terminal death-like domain, e.g. the CARD or pyrin domain, is thought to recruit downstream effector molecules by homotypic interactions. Such homotypic complexes have been determined for all members of the death-domain super...

متن کامل

The death-domain fold of the ASC PYRIN domain, presenting a basis for PYRIN/PYRIN recognition.

The PYRIN domain is a conserved sequence motif identified in more than 20 human proteins with putative functions in apoptotic and inflammatory signalling pathways. The three-dimensional structure of the PYRIN domain from human ASC was determined by NMR spectroscopy. The structure determination reveals close structural similarity to death domains, death effector domains, and caspase activation a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013